Compactness of Hankel Operators with Continuous Symbols
نویسندگان
چکیده
منابع مشابه
Invertibility of matrix Wiener-Hopf plus Hankel operators with APW Fourier symbols
Operators of Wiener-Hopf plus Hankel type have been receiving an increasing attention in the last years (see [1, 2, 4, 6, 10, 12–16]). Some of the interest in their study arises directly from concrete applications where these kind of operators appear. This is the case in problems of wave diffraction by some particular rectangular geometries which originate specific boundary-transmission value p...
متن کاملWiener-hopf plus Hankel Operators on the Real Line with Unitary and Sectorial Symbols
Wiener-Hopf plus Hankel operators acting between Lebesgue spaces on the real line are studied in view of their invertibility, one sided-invertibility, Fredholm property, and the so-called n and d–normal properties. This is done in two different cases: (i) when the Fourier symbols of the operators are unitary functions, and (ii) when the Fourier symbols are related with sectorial elements appear...
متن کاملCompactness of Hankel Operators and Analytic Discs in the Boundary of Pseudoconvex Domains
Using several complex variables techniques we want to investigate the interplay between the geometry of the boundary and compactness of Hankel operators. Let β be a function smooth up to the boundary on a smooth bounded pseudoconvex domain Ω ⊂ C. We show that if Ω is convex or the Levi form of bΩ is of rank at least n − 2 then compactness of the Hankel operator Hβ implies that β is holomorphic ...
متن کاملNew operators through measure of non-compactness
In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2017
ISSN: 1661-8254,1661-8262
DOI: 10.1007/s11785-017-0659-3